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New Determinations of Diffusion Coefficients
for Various Dopants in Liquid Silicon
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The objective of this article is to propose new determinations of the diffu-
sion coefficients of various dopants in liquid silicon. The approach of this
work is based on an analysis of the effective segregation coefficients obtai-
ned by Kodera in Czochralski growth of silicon-based alloys. However, it will
be shown that the solidification model used by Kodera presents some serious
deficiencies as it does not account for (i) the dependence of the solute boun-
dary layer thickness on the interface velocity and (ii) the effect of density
change upon freezing. In addition, the values of the thermophysical parame-
ters used by Kodera can be questioned in view of recently published data.
The approach proposed in the present work can be used to provide a much
sounder physical basis for the analysis of the data, but it should be stated
that the uncertainty on the partition coefficients is such that a measurement
technique based on solidification experiments cannot be expected to be very
accurate. In this respect, the scatter of the data, hardly avoidable in Czo-
chralski growth experiments, is also discussed. To put things on a quantita-
tive basis, an error analysis is carried out to quantify the error bar attainable
by such a measurement technique.

KEY WORDS: Czochralski growth; error analysis; liquid-phase solute diffu-
sion coefficients; Si–Al system; Si–As system; Si–B system; Si–Ga system; Si–
In system; Si–P system; Si–Sb system.

1. INTRODUCTION

In many instances, doped solid-state silicon is produced from a liquid-
phase process. One can of course think of single crystal growth by the
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Czochralski or float zone methods with applications as substrates for the
semiconductor industry [1], and of polycrystalline solidification of mate-
rials for applications in the photovoltaic solar cells business [2]. Laser pro-
cesses, such as laser thermal processing [3,4], also feature the formation of
a liquid phase in which the kinetics of solute transport are a very impor-
tant issue.

Whatever the growth configuration, solute diffusion is a key issue in
many aspects of the process; it controls species transport in the melt, and
thus the distribution of the dopants and the purification of the impuri-
ties. Liquid-state diffusivity is also an important ingredient in the criteria
governing the morphological stability of the solidification interface (planar
to cellular and dendritic transitions), and the kinetics of nucleation and
growth at the atomic scale.

Molten silicon is known to be an extremely reactive material, which
makes the realization of dedicated solute diffusion coefficient measure-
ments a very difficult task. As a consequence, solute diffusion coefficients
have often been estimated from dopant segregation in solidification expe-
riments (see, e.g., Refs. 5–7). Our opinion, as expressed in a former article
[8], is that the interpretation of such indirect measurements is always ques-
tionable, but one should at least make the best of what is available.

The purpose of the present manuscript is to re-examine the diffusi-
vity data obtained by Kodera [5] in his seminal work on solute segrega-
tion of various dopants (Al, As, B, Ga, In, P, Sb) in silicon Czochralski
growth. In such experiments, a crystal growing in contact with the melt
is slowly pulled upwards while being rotated to ensure radial symmetry of
the thermal distribution. Apart from the resulting forced flow, the fluid is
also subject to buoyancy and surface driven convection, as well as a pos-
sible crucible rotation, which makes the hydrodynamic problem very com-
plex [1].

Nevertheless, segregation data in alloys are often interpreted assuming
that forced convection dominates in the vicinity of the growing crystal,
and it is thus possible to relate the effective partition coefficient to the soli-
dification conditions, namely, the interface velocity and the rotation rate.
Of particular interest for our present purposes is the fact that the diffu-
sion coefficient of the dopant is an important factor in the fitting proce-
dure, and can thus be estimated from segregation data. Our objective in
the present work is to show that the model used by Kodera for the inter-
pretation of his experimental data is not appropriate, and that a better
physical picture (and thus hopefully more reliable data) can be proposed.

As in all indirect measurement techniques, a number of other thermo-
physical parameters are involved in the derivation of the diffusion coef-
ficients. In the present case, these auxiliary variables are the solid- and
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liquid-state mass densities, fluid viscosity, and dopant equilibrium partition
coefficients. Regarding viscosity, in the absence of available experimental
data, Kodera used an estimate that now appears questionable. We shall
discuss how recently published data can be considered sufficiently reliable
for our present purposes. We shall see that this is also true of mass den-
sities.

Such is not however the case for the partition coefficients, where it
seems that no new experimental data have been published since the review
of Trumbore [9] in 1960. Trumbore himself was very conscious of the
accuracy of his data, which he estimated “never better than 10%.” Since
1960, Trumbore’s data has been used in a number of articles, including
Kodera’s, without being questioned. Nevertheless, as the partition coeffi-
cients represent key input in the solidification model, it appeared an inter-
esting option to also carry out the fitting on both diffusion and partition
coefficients. We shall see that such an approach allows further insights in
the validity of the solidification model used.

We shall first review in Section 2 the solidification model applied to
the case of Czochralski crystal growth, and outline the main differences
with Kodera’s approach. We shall then proceed in Section 3 to an analysis
of Kodera’s data in order to propose new estimates for the diffusion coef-
ficients in molten silicon. We shall finally discuss in Section 4 the accuracy
attainable by such an indirect measurement technique.

2. SOLIDIFICATION MODEL

The starting point of our analysis of segregation data is the solute
mass conservation equation, that features the density of the liquid phase
ρL, the solute concentration CL and the solute mass flux J:

ρL∂CL/∂t +∇ ·J =0 (1)

where the symbol ∇ represents the “nabla” derivation operator. For the
sake of consistency with the hydrodynamic part of the problem, CL is
expressed in mass fraction. The diffusive contribution to the mass flux
is assumed to depend only on the composition gradient (i.e., all cross-
coupling effects such as thermodiffusion or barodiffusion are assumed to
be negligible), meaning that J can be written as

J =−ρL DL∇CL +ρLCLV (2)

where DL and V, respectively, represent the liquid-phase solute diffusion
coefficient and the convective velocity in the fluid, the latter being a
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solution to the Navier–Stokes equation. Combining Eqs. (1) and (2), we
find

∂CL/∂t + (V ·∇)CL = DL∇2CL (3)

The time dependence of Eq. (3) makes it difficult to handle, and the
analysis of segregation data is generally (see, e.g., Refs. 10–12) carried out
assuming that a quasi-steady state can be reached in a frame moving with
the solid–liquid front in which the motion of the fluid toward the inter-
face takes place at a rate VL

I , which leads to the addition of (VL
I · ∇)CL

term on the right-hand side (RHS) of Eq. (3). It is very important for our
present purposes to keep in mind that VL

I is not equal to the solidifica-
tion rate prescribed by the experimenter VS

I when, as is the case for sili-
con, the mass densities of the liquid ρL and the crystal ρS are significantly
different. More precisely, VL

I and VS
I can be related from the condition of

mass conservation at the interface:

ρSVS
I ·n =ρLVL

I ·n (4)

with n standing as the unit vector normal to the interface protruding into
the fluid. This fact was not taken into account by Kodera in his analysis
of his experimental data, and we shall see that the circa 10% difference
between ρL and ρS in silicon leads to significant differences in the diffu-
sion coefficient estimates.

The fundamental feature governing segregation in crystal growth from
the melt is the fact that all the solute present on the liquid side of the
interface cannot generally be incorporated in the solid. Considering the
low growth rates generally used, local thermodynamic equilibrium condi-
tions are expected to prevail at the interface, and the partition coefficient
k, defined as the ratio k =CI

S/CI
L, where CI

S and CI
L, respectively, represent

the compositions on the solid and liquid sides of the interface, can be esti-
mated from phase-diagram information.

The mass balance at the growth front can be expressed stating that
the excess solute present at the growth front is rejected by diffusion in the
fluid. Under the assumption that the effect of solid-state diffusion can be
neglected, mass conservation at the interface can be written as

ρL(VL
I ·n)CI

L =−ρL DL(∂CL/∂n)I +ρS(VS
I ·n)CI

S (5)

The assumption of negligible solid-state diffusion may appear rather
drastic, but it is generally made in the crystal growth literature [10–12].
Even though there is no experimental data on the topic, it is believed
that the diffusivity in the solid is at least two orders of magnitude smaller
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than in the liquid. In addition, the concentration gradients are also expec-
ted to be smaller in the solid. Unless one focuses on the study of short-
range composition variations (the so-called solute striations), Eq. (5) can
be safely used.

A further simplification is to suppose that the interface is planar, and
that the concentration field only depends on the distance Z to the inter-
face. This is of course a very drastic assumption, but radial segregation
can often be neglected to a first approximation in Czochralski growth
experiments. Besides, as is the case in Kodera’s work, the experimental
data are often of a one-dimensional nature, meaning that the information
regarding the other dimensions is lost. In any case, the fundamental gover-
ning equation and boundary condition to be used for the interpretation of
the segregation data can be written as

DLd2CL/dZ2 + (V L
I − W (Z))dCL/dZ =0 (6)

−DL(dCL/dZ)I = V L
I (1− k)CI

L (7)

where W is the Z -component of the fluid velocity. Equation (4) has been
used in connection with Eq. (5) to derive the boundary condition, Eq. (7).
To fully specify the problem, one may specify a far-field condition of the
form,

CL →C∞ when Z →∞ (8)

The system defined by Eqs. (6)–(8) was first solved by Burton et al.
[10] in their pioneering work on solute segregation. However, it should be
recalled that the determination of W is in principle a formidable task in
Czochralski experiments: indeed, as mentioned earlier, motion in the melt
is simultaneously driven by the imposed crystal rotation and the lateral
temperature gradients that induce both bulk and surface driven (Maran-
goni) convection, and possibly by crucible rotation.

To a first order, however, the crystal rotation is the primary driving
force: such was the approximation made by Burton et al. [10], who relied
on an analytical solution derived by Cochran [13] for the case of an infi-
nite solid rotating over an infinite bath, as input in the transport equation.
Briefly speaking, the expression for W is given as

W (Z)=−0.51ω3/2ν−1/2 Z2 (9)

where ω and ν represent, respectively, the crystal rotation rate and the
kinematic viscosity of the melt. The minus sign in the above equation
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comes from the fact that the fluid motion is directed toward the growing
interface. According to a number of experimental and modeling studies
(see, e.g., the reviews in Refs. 14 and 15), this velocity field is probably cor-
rect at the moderate rotation rates (maximum 144 rpm) used in Kodera’s
experiments. However, it cannot be ruled out that an oscillatory com-
ponent is superimposed on this steady field. We shall come back to this
point in Section 4, since it could well be one of the main factors limi-
ting the accuracy of the diffusion measurements. In any case, Burton et al.
showed that the analytical solution to the problem defined by Eqs. (6)–(9)
could be written as

[(CI
L −C∞)/(CI

L −CI
S)]=

∫ ∞

0
exp(−z − Bz3)dz (10)

where z = Z V L
I /DL. The dimensionless parameter B, which essentially

represents a measure of the intensity of convective solute transport, is
given as

B =0.17(V L
I )−3ω3/2ν−1/2 D2

L (11)

In the limiting case where B >>1, the integral on the right-hand side
of Eq. (10) can be expressed as

∫ ∞

0
exp(−z − Bz3)dz =1.6V L

I ω−1/2ν1/6 D−2/3
L (12)

In the general case, the integral on the RHS of Eq. (10) can be eva-
luated via numerical integration as a function of the parameter B. When
B → 0, one recovers the classical result obtained by Tiller et al. [16],
namely, that the solute boundary layer thickness scales with DL/V L

I .
In the same seminal work [10], Burton et al. proceeded to show that

the segregation data could be analyzed with the help of a stagnant film
model, whose thickness δSF could be defined “so that it yields the same
dependence of the composition upon the growth parameters that is given
by the exact solution” [10]. However, such a stagnant film model has no
solid physical basis, as shown by Wilson [17] when she re-examined the
segregation problem in Czochralski growth. In the same article, Wilson
gave a proper definition of the solute boundary layer thickness:

δ =−(CI
L −C∞)/(dCL/dZ)I (13)

and proved that this δ could be fruitfully normalized with respect to its
value in purely diffusive conditions, δ = DL/V L

I , to define a convecto-
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diffusive parameter ∆ such that

∆= δV L
I /DL =

∫ ∞

0
exp(−z − Bz3)dz (14)

The convecto-diffusive parameter thus defined scales from values close
to zero in the convective regime limit, and reaches one for purely diffusive
transport conditions. Wilson [17] also proceeded to show that the effective
partition coefficient could be expressed as a function of ∆ according to

keff = k/(1− (1− k)∆) (15)

The fundamental interest of Eq. (14) is that it allows to plot all Czo-
chralski experiments on a master curve relating the process conditions,
summed up in the parameter B, to the observed segregation, as measu-
red by ∆, independently of the values of the partition coefficients of each
solute. As we shall see later, such a feature will prove very useful when we
discuss the statistical adequacy of the model.

The procedure followed by Kodera was to derive the value of the
diffusion coefficient from the measurement of the effective partition coef-
ficients pertaining to the various growth conditions. The stagnant film
model of Burton et al. and the approximate Eq. (12) were used for the
analysis of the data. However, as stated above, the stagnant film model has
no sound physical basis. As for the assumption of convective mass trans-
port (or equivalently B >> 1), it is often realistic in Czochralski growth,
but it is not always the case: we will see that it is not correct at the highest
growth velocities and/or lowest rotation rates.

On the other hand, the boundary layer concept introduced by Wilson
was later found to be extremely useful for the analysis of segregation phe-
nomena in crystal growth from the melt [12], as it can be used to account
for both radial- and time-dependent segregation phenomena [18,19]. As a
matter of fact, one of the objectives of this article is to show that it is
better suited for the analysis of the data than the model initially used by
Kodera.

It may appear that we spent too much time on the presentation of the
segregation problem, but it is really at the basis of the diffusion coefficient
determination, and we thought it necessary to emphasize all the assump-
tions made. To sum things up, our approach differs from the one used by
Kodera in two main respects:

(i) Effective partition coefficient data will be analyzed in the frame of
the physically sound boundary layer model of Eq. (15), taking into
account the full dependence of the solute boundary layer thickness
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on interface velocity (Eq. (14)), as opposed to assuming as in Eq.
(12) that solute transport proceeds only by convection.

(ii) We will account for the effect of density change upon freezing, as
opposed to assuming that the V L

I appearing in Eqs. (6) and (7) is
merely equal to the pulling rate prescribed by the experimenter.

In addition, the use of the (B,∆) representation makes it possible to
gather all of Kodera’s data on a single graph, and thus to implement a
χ2 test to judge the validity of the model used.

3. ANALYSIS OF EXPERIMENTAL DATA

To carry out the best fit procedures along the lines detailed in
Section 2, we first have to extract the B and ∆ parameters from Kodera’s
data, plotted as the ratio keff /k vs. pulling velocity VS

I at a given rotation
rate ω for each solute. The number of experiments carried out by Kodera
ranges from eight in the case of Al and In to 15 for As, Ga, and P. We
first derive V L

I from V S
I using Eq. (4), and B from Eq. (11) using a trial

value for DL. When the fitting is done solely on DL, we get ∆ from Eq.
(15) using literature values for k. When the fitting is done on both DL and
k, an additional step is necessary: we first recalculate the absolute value of
keff from the k values used by Kodera, and then get ∆ from Eq. (15) using
a trial value for k. The (B,∆) couples once derived, the determination of
the diffusion coefficient is based on the minimization of χ2 defined as

χ2 =
n∑
1

(∆
exp
i −∆th

i )2/σ 2
i (16)

where ∆
exp
i and ∆th

i represent, respectively, the experimentally measured
and theoretically derived convecto-diffusive parameters and σi stands for
an estimate of the variance of ∆

exp
i . As for n, it represents the number of

data points (growth runs) for the solute considered. The assessment of σi

is not an easy task, the values used as input to Eq. (16) were taken as

σi =0.04 when ∆
exp
i �0.1 (17a)

σi = (0.4−0.3∆exp
i )∆

exp
i when ∆

exp
i �0.1 (17b)

As the segregation profiles are only weakly dependent on the value of ∆ in
the strongly convective transport regime relevant to Eq. (17a), an absolute
uncertainty was selected in the low ∆

exp
i range. The increased sensitivity of

the segregation profiles at higher values of ∆
exp
i is translated in Eq. (17b)

assuming a decreasing relative uncertainty, which remains however always
higher than 10%. We will come back to the discussion on the factors that
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Table I. Thermophysical Parameters at Silicon Melting Temperature Used in the Present
Fitting Procedures

ν (kinematic viscosity of molten silicon) 3.5×10−7 m2· s−1

ρL (mass density, liquid phase) 2.55×103 kg · m−3

ρS (mass density, solid phase) 2.3×103 kg ·m−3

ρS/ρL (mass density ratio) 0.9
k (equilibrium partition coefficient)

Aluminum 0.002
Antimony 0.023
Arsenic 0.3
Boron 0.8
Gallium 0.008
Indium 0.0004
Phosphorus 0.35

intrinsically limit the accuracy of the estimation of ∆
exp
i from segregation

curves.
At this point, it can indeed be argued that the choices made for σi are

somewhat arbitrary, but, as will be shown in Section 4, they have fortu-
nately a limited impact on the determination of the diffusion coefficients.
The ∆th

i ’s were derived through numerical integration of Eq. (14), using
the parameters listed in Table I for calculation of the B parameter. We will
also come back in Section 4 to the sensitivity of the diffusion coefficient
determinations on the values of the thermophysical parameters.

The raw results of the fitting procedure are summarized in Table II.
The first thing to note is that the χ2 values are fairly large, as compared to
the number of independent variables. Let us recall that for a given solute
with a number n of growth runs, the number of independent variables z
should be taken as either n −1 or n −2, depending on whether the fitting
is done solely on D or on both D and k. The requirements for a “mode-
rately good fit,” as defined by stating that χ2 should be of the order of
the number of independent variables [20], are not fulfilled in all cases.

However, it may be argued that the number of growth runs per solute
is not statistically relevant. Besides, it should be acknowledged that the
raw data is often quite scattered: for instance, in the case of phospho-
rus, ∆ values of 0.04, 0.05, 0.10, 0.13, and 0.15 can be obtained from
five experiments with identical growth conditions (V S

I = 20 µm · s−1, ω =
55 rpm). With such scatter, no single curve can thus be expected to pro-
vide a nice fit through the data, but we will come back on the assessment
of the validity of the physical model in the next section.
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Table II. Raw Results of Fitting Procedure

Fit on D Fit on D and k
Solute n D (m2· s−1) χ2 D (m2· s−1), k χ2

Aluminum 8 5.8×10−8 1.2 6.8×10−8, 2.03×10−3 1
Antimony 13 1.4×10−8 21.5 6.4×10−9, 0.02 14
Arsenic 15 2.6×10−8 10.6 1.9×10−8, 0.29 8.1
Boron 11 1.5×10−8 3.8 1.2×10−8,0.795 3.1
Gallium 15 4.4×10−8 15.6 3.6×10−8, 7.85×10−3 15
Indium 8 6.1×10−8 5.9 8.2×10−8, 4.1×10−4 5.2
Phosphorus 15 4.2×10−8 17.1 2.3×10−8, 0.332 13
Overall 85 75.7 59.4

The results of both fitting procedures are shown in Fig. 1 for the case
of arsenic. As can be seen in Table II, arsenic should be taken as represen-
tative of an intermediate situation, when compared to solutes with much
lower (Al, B) or much higher (Ga, P, Sb) χ2’s. Looking at Fig. 1, the diffe-
rence in fit quality between both procedures may not be visually obvious,
but we will see in the next section that the two-parameter fit should be
given the preference. In any case, we now have to discuss whether mea-
ningful diffusion coefficients, and associated error bars, can be deduced
from the solidification experiments.

4. DISCUSSION AND ERROR ANALYSIS

4.1. Assessment of the Validity of the Physical Model and the Fitting
Procedure

The first issue that needs to be addressed is that of the validity of
the solidification model itself. As can be seen in Table II, the χ2 for the
cases of Ga, Sb, and P is rather large compared to the number of inde-
pendent variables z, which indicates that the model may not be suitable
for the analysis of the data [20]. As a result of the universal (B,∆) repre-
sentation used in the present article, this χ2 vs. number of independent
variables criterion can also be tested on a global scale. The data coming
from the experiments on all solutes are gathered in Fig. 2, along with the
∆= f (B) master curve from the numerical integration of Eq. (14), and it
can be seen that the trends are in agreement.

More specifically, when the fitting is done solely on D, the global χ2,
derived by summation of all the solute specific χ2, is 75.7. The total num-
ber of independent variables Z being 78 (N = 85 individual experiments,
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Fig. 1. Raw data and fits for arsenic; (a) fitting done only on
D and (b) fitting done on both D and k.

bound by the seven best fit diffusion coefficient determinations for each
solute), we find that χ2 is slightly less than the number of independent
variables, which fulfills the requirement for a “moderately good fit” [20].
In other words, and even though the scatter is large, the segregation model
we used cannot be invalidated.

The odds for the validity of the model are even better when the fit-
ting is done on both D and k: the global χ2 is 59.4, whereas the total
number of independent variables is now 71 (the N =85 individual experi-
ments, bound by the seven best fit diffusion coefficients and seven best fit
partition coefficient determinations for each solute). An important point
is that the values of the partition coefficients coming from the fit are in
close agreement with values from the literature. In all cases (except for the
case of antimony where it reaches 13%), the data are well within the 10%
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(a)

(b)

Fig. 2. Overall fits for both fitting procedures; (a) fitting done
only on D and (b) fitting done on both D and k.

limit estimated by Trumbore [9] as the best possible uncertainty on par-
tition coefficients. There is therefore no reason to believe that the parti-
tion coefficients should be taken exactly as they are given in the literature.
However, since minute differences in k translate to significant variations on
D, our opinion is that the results from the procedure that uses both D and
k as fit variables are to be preferred.

Another issue is that the odds for a model attempting to fit a straight
line to the data shown in Fig. 2 to be correct are significantly less, as
can be inferred from the curvature of the data in the high B−1/3 range.
Any attempt to try to fit a straight line must necessarily lead to a much
higher χ2. For instance, when the fitting is done solely on D, we obtai-
ned a value of χ2 above 92. We also analyzed the data using the stag-
nant film model of Burton et al. [10] in connection with Eq. (12), i.e., the
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procedure followed by Kodera, and found a χ2 of 128. Keeping in mind
that there are only Z = 78 independent experiments in that case, such a
χ2 value makes it very unlikely for the model used by Kodera to be cor-
rect, which justifies the re-examination of the segregation data carried out
in the present work.

Regarding the assessment of the validity of the fitting procedure, we
also checked the impact of the rather arbitrary choice for σi made in
Eqs. (17). We tried, for instance, to use fully absolute uncertainties (i.e., σi

independent of ∆
exp
i ) and proportional uncertainties (i.e., a constant ratio

between σi and ∆
exp
i ). With a mixed absolute-relative scheme as in Eq.

(17), we also checked the effect of a modification of the numerical factors.
The overall conclusion is that the diffusivity results are fairly sensitive to
the choice of σi , discrepancies in excess of 20% with respect to the results
obtained using Eqs. (17) being fairly common. While this may appear as a
weakness likely to undermine the validity of the results, we shall see that
the error bars on the diffusion coefficients always significantly exceed 20%,
so that the fitting procedure may nevertheless be considered as sufficiently
robust.

4.2. Thermophysical Parameters

Since the expression for the B parameter from Eq. (11) features the
solid and liquid mass densities, as well as the kinematic viscosity, it can
be expected that the values selected for these parameters will impact the
determination of the diffusion coefficient. To start with, we checked that
when these parameters are changed, the best fit value of the diffusion coef-
ficient adjusts so as to keep B constant. Since B from Eq. (11) can be
written as B = 0.17 (ρS/ρL)−3(V S

I )−3 ω3/2 ν−1/2 D2
L, assuming a prescribed

solidification velocity V S
I (at least its average value) and the crystal rota-

tion rate ω to be accurately known, it is possible to derive from the above
relation the sensitivity of the diffusion coefficient to the other thermophy-
sical parameters with the relation using the condition, ∆B/B =0,

∆D/D = (3/2)[∆(ρS/ρL)/(ρS/ρL)]+ (1/4)[∆ν/ν] (18)

The “historical” reference sources for the values of the thermophy-
sical parameters of silicon are the works of Glazov et al. [21] and Yaws
et al. [22], a more recent synthesis being proposed by Kimura and Tera-
shima [23]. If we turn to mass density, experiments have been attempted
for liquid-phase measurements using Archimedian [24], as well as electro-
static [25] or electromagnetic [26] levitation techniques. The values listed
in Ref. 26 range from ρL =2.52×103 to 2.6×103 kg ·m−3. As for ρS, the



1298 Garandet

proposed values range between 2.29×103 and 2.33×103 kg ·m−3. We deci-
ded to take ρL = 2.55 × 103 kg ·m−3 and ρS = 2.3 × 103 kg ·m−3, a choice
consistent with ρS/ρL = 0.9. For both the solid and liquid cases, we esti-
mated the error bar to be 1%, translating to a 2% uncertainty on ρS/ρL,
and thus 3% on D from Eq. (21). For purposes of comparison, using the
same equation, the neglect by Kodera of the effect of the density change
upon solidification amounts to a shift of 10% in ρS/ρL, and thus to a bias
of 15% in the diffusivity values.

Regarding the kinematic viscosity, Refs. 21 and 22 both propose a
value ν = 3.5 × 10−7 m2·s−1. Using ρL = 2.55 × 103 kg ·m−3, we get for the
dynamic viscosity at the melting point η=8.9×10−4 Pa · s, in good agree-
ment with the recent measurement carried out by Sasaki et al. [27] using
the oscillating cup method. However, the data of Sasaki et al. exhibit a
strong dependence of η on temperature, and we thus decided to associate
a rather large error bar of 20% to the determination of ν. Fortunately,
due to the 1/4 coefficient in Eq. (21), such a choice results only in a 5%
uncertainty on D. It should be noted that Kodera used a very different
value for the kinematic viscosity, namely, ν = 1.06 × 10−6m2 · s−1, which
was deduced from theoretical considerations in the absence of available
experimental data. For purposes of comparison, even with the damping
effect of the 1/4 coefficient in Eq. (21), Kodera’s choice translates into a
bias on the diffusivity values in excess of 30%.

4.3. Estimation of Error Bars

Our objective in this subsection is to finalize the estimation of the
error bars that can be ascribed to the data from Kodera’s experiments. In
the following, no attempt will be made at a quantitative definition of the
uncertainties: the indicated error bars should only be taken as an assess-
ment of our opinion that the exact value is very likely to be found within
the given interval. As the technique proposed in the present work is essen-
tially a fit using a ∆= f (B) master curve, the error sources can be split
into (i) those coming from the determination of ∆ from the segregation
curves and (ii) those related to the uncertainties in the values of mass den-
sity and kinematic viscosity that combine in the B parameter. In the gene-
ral case, the implicit dependence of ∆ on B does not allow for an analytic
expression of the error bar as a function of the sources discussed above.
For purposes of simplicity, we decided to use an additivity rule based on
asymptotic Eq. (12) for estimation of the overall uncertainty:

∆D/D = (3/2)σ∆ + (3/2)[∆(ρL/ρS)/(ρL/ρS)]+ (1/4)[∆ν/ν] (19)
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Table III. Recommended Diffusivity Values, with Associated Error Bars, along with Initial
Values from Kodera

Solute D (m2 · s−1) Error bar (%) Kodera’s data (m2 · s−1)

Aluminum 6.8×10−8 44 7.0×10−8

Antimony 6.4×10−9 53 1.5×10−8

Arsenic 1.9×10−8 44 3.3×10−8

Boron 1.2×10−8 37 2.4×10−8

Gallium 3.6×10−8 83 4.8×10−8

Indium 8.2×10−8 62 6.9×10−8

Phosphorus 2.3×10−8 55 5.1×10−8

The last issue to be discussed is the assignment of an uncertainty to
the determination in ∆, denoted σ∆ in the following, from the spread of
the data around the ∆ = f (B) master curve. To do so, we shall define
σ∆ for each solute as the standard deviation that yields a value χ2 = z =
n −2. This may look like a trick, but the validity of the model once che-
cked from a priori physically sound choices for the standard deviations
(see Eqs. (17)), what we are doing is simply setting the χ2 to its mean
value. The values obtained for σ∆ are, respectively, 0.24 for Al, 0.3 for Sb,
0.24 for As, 0.19 for B, 0.51 for Ga, 0.35 for In, and 0.31 for P.

After stating in Section 3 that a relative uncertainty is not expected
to be physically relevant in the low ∆ range, it may appear surprising to
re-introduce it at this point. Our opinion is that too much meaning should
not be given to the values of σ∆ listed above, and that σ∆ should only be
taken as an auxiliary variable allowing a measurement of the experimental
spread of the effective partition coefficients and associated ∆ values, and
thus of the diffusivities for each solute.

To sum things up, the values for the diffusion coefficients and the
associated uncertainties from Eq. (19) are listed in Table III along with the
initial data of Kodera. Due to the large uncertainties, the data are found
to overlap in all cases, except for the case of Sb. A similar conclusion can
be drawn regarding the data of Table II. An interesting result is that the
contribution of the uncertainty associated with the thermophysical para-
meters is rather limited (8% with the choices made in the present work),
meaning that the spread of the ∆ values around the master curve is by far
the dominant error source.

4.4. Toward More Accurate Data

From the above conclusion, it appears that the key to a truly accurate
determination of D would be a significant reduction of the uncertainties
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on ∆, i.e., of σ∆. In this respect, the Czochralski technique used by
Kodera may not be the most suitable. It is in principle possible to select
growth conditions such that the fluid velocity field, as given by Eq. (9),
remains steady. However, its interactions with bulk and surface driven
natural convection, as well as with the forced flow generated by crucible
rotation, have a strong impact on the transition toward oscillatory beha-
vior. In practice, and even in the vicinity of the interface, one should
consider that an unsteady fluid velocity component is often superimposed
on the steady field of Eq. (9).

In any case, this oscillatory melt convection will impact both directly
and indirectly (through fluctuations on the growth rate) on the amount of
incorporated solute, translating in turn in significant dispersions on ∆. In
addition, from a technological standpoint, the control of the crystal pul-
ling system is a very complex task. This results in unavoidable growth rate
variations, which also translate in significant dispersions on ∆. Depending
on their frequencies, the induced perturbations can be somewhat filtered
by the solute boundary layer [18], but will in general result in a fairly high
intrinsic uncertainty on the determination of ∆. Altogether, our opinion is
that σ∆ cannot be expected to be significantly less than 20%.

To fix this problem, the bottom seeded vertical Bridgman method,
with its stabilizing thermal gradient is an a priori interesting option.
However, it is quite difficult to control the horizontal temperature diffe-
rences that act as a convective driving force. In this respect, the horizon-
tal Bridgman configuration could be an interesting option. Nevertheless, as
with all solidification techniques, the control of the convective flow is not
an easy task, which may render the interpretation of the experimental data
far from obvious. In any case, a complete numerical model of the experi-
mental configuration would be necessary, which is still by itself an issue
that is far from obvious.

In view of the above limitations, our opinion is that the best chance
to accurately measure the diffusion coefficients would be to set-up a dedi-
cated experiment aiming at a one-dimensional implementation of Fick’s
law. The microgravity environment of space offers promising possibilities
to circumvent the problem of unwanted convective transport, and interes-
ting results have thus been obtained, see e.g., Ref. 8 and references the-
rein. Alternatively, one could think of magnetic fields to either control
[28] or strongly damp [29] fluid flow. In all cases however, the problem
of the reactivity of liquid silicon with crucible materials would have to be
tackled.
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5. CONCLUDING REMARKS

Our objective in this work was to re-examine the seminal work
of Kodera on the determination of the diffusion coefficients of various
dopants in silicon from Czochralski solidification experiments. Since the
segregation model used by Kodera was shown to be incorrect, such a re-
examination appeared necessary. We also performed a sensitivity check on
the thermophysical parameters (namely, kinematic viscosity and mass den-
sity) necessary for the data analysis. There again, Kodera’s choices appear
questionable in view of recently published values, justifying the approach
of the present work.

In addition, we extended the work of Kodera by allowing the fit of
the experimental data to be carried on both the diffusion and partition
coefficients. Our results show that the values of the partition coefficients
available in the literature are essentially correct. Nevertheless, the slight
variations with respect to published data were found to have a significant
impact on the determination of the diffusion coefficients. Our opinion is
that the data coming from the fit on both the diffusion and partition coef-
ficients are to be preferred. Since the literature values on the partition
coefficients bears a rather large uncertainty, the slight but significant χ2

test advantage should be given due recognition.
As the analysis procedures and the values of the thermophysical para-

meters are fairly different, no general trend can be deduced from the com-
parison of our results with Kodera’s initial data recalled in Table III. For
instance, the fact that Kodera takes V L

I to be equal to the solidification
rate prescribed by the experimenter V S

I tends to shift his fitted D to higher
values, as does his choice of a larger kinematic viscosity. On the other
hand, his use of the stagnant film model has the effect of shifting D to
lower values. Altogether, it can be stated that Kodera’s values are somew-
hat higher than ours, but remain in the same range.

As a matter of fact, an important issue is that the error bars may
appear deceptively high (often amounting to more than 50% in relative
terms), but it should be recalled that solidification experiments are a rather
indirect way for the measurement of diffusion coefficients. Another sobe-
ring thought is that, even though Kodera used a wrong model and wrong
values of the thermophysical parameters, his values and ours overlap in
nearly all cases. Nevertheless, as Kodera’s data are still quoted as a refe-
rence nowadays, it seemed worthwhile to put the analysis on a sound pro-
cedural basis.

Finally, we also discussed whether other measurement techniques
could improve the accuracy in the diffusion coefficients. Better control of
the convective flow in the Bridgman configuration could lead to significant
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improvements, but the real breakthrough would be to work on a direct
approach, e.g., through long capillary or shearing cell techniques. Howe-
ver, it should be stated that whether the extremely reactive nature of liquid
silicon will allow such techniques to be implemented remains an open
question.
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